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Abstrsct From the sole knowledge of the numerical values of the potential V ( x )  at a finite 
number of points we are able to w n m d  the potenhl es a funclion of the Wordinate. and 
infer approximate wavefunctions without in any way (numerically) dealing with SchmJinger’s 
equation. 

There are several interesting situations in which one knows the potential function, in the 
ordinary version of Schrodmger’s equation, only in a finite set of points, say N. Examples 
include double quantum wells in relation to quantum Hall states [I, 21, layered multi- 
quantum-well structures which contain a number of identical, strictly two-dimensional 
electronic systems [3,4], etc. From a different point of view, any self-consistent treatment 
of the quantum many-body problem will yield a numerical onebody potential that, as 
such, is given at a finite set of locations. For instance, this is the situation one encounters 
when solving the time-dependent Schrodinger equation by recourse to the cellular automata 
method IS]. 

We wish here to present an extremely simple algorithm that allows for a reasonable 
way of interpolating between the N points in which the potential is actually known, so as 
to construct a continuous potential function. We assume the potential to be a (piecewise) 
smooth and regular function and, consequently, the method cannot be applied to non- 
regular potentials (for instance, to the extreme case of a &potential). Additionally, the mere 
knowledge of the potential at a finite set of locations allows one to construct a passable 
approximation to the wavefunction and yields, albeit in an approximate fashion, the energy 
spectrum, without having to (numerically) deal with Schrodinger’s equation. 

We start with the simple ansatz for an M-node excited state (we shall restrict ourselves, 
for the sake of simplicity, to the one-dimensional case) 

where PM is the general polynomial of ihe Mth degree (xM + C M X ~ - ’  + . . . + C ~ X  + cl), 
whose coefficients are yet to be determined, and the As are parameters to be properly fixed 
according to the present algorithm. The form (1) can be justified on information-theoretic 
(IT) grounds [6, 71, as the one that maximizes the so-called relative entropy. However, we 
are not going to employ here IT techniques in order to determine the parameters A,,. 
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From ScIuMinger's equation 

we find, after setting (P&) equal to our ansatz (1) and evaluating the quantity 

the useful relationship 

The idea is to write down (4) explicitly for the N points xi where V ( x )  is known: 

and regard now the concomitant N relationships as posing a set of N coupled, cubic algebraic 
equations in the As, E M  and the M coefficients of P M ,  which can be trivially solved by 
recourse to standard commercially available numerical algorithms (see, for instance, [8]). 
Actually, €or the ground state one faces a merely quadratic system, since PM equals unity 
and the second term in the first bracket-on the RHS of (4), which gives the order of the 
system, acquires its simplest possible form. 

In order to analyse the possibilities of the method proposed here, we have first 
investigated its validity for both the harmonic oscillator and the square-well potentials. 
In the case of the harmonic oscillator potential V ( x )  = x2 /2  (we have taken fr = m = 
OJ = l), choosing Po(x) = 1 for the ground state, Pl (x )  = x for the first excited state, 
&(x)  = x2 - c2 for the second excited state, etc, and N - M - 1 2 for the number of 
As, it is easy to verify that from (4) one obtains A; = 1, A! = 2.3 = . . . = AN-M-I  = 0, and 
EO = 1, 2 El = 5 ,  E2 = 5 . .  . . . That is, we analytically recover the exact spectrum. Further, 
after selecting the positive root for A2 (so as to guarantee the correct asymptotic behaviour) 
we obtain the exact wavefunctions. Of course, the same results can also be obtained in 
numerical fashion with the algorithm that we are here advancing. 

5 

In the case of the square-well potential 

Vo f o r - a c x c a  
60 otherwise 

V(X) = 
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then choosing N = 3 and PO@) = 1 for the ground state (M = 0), by substitution in (5) 
one obtains 

for~any three points -a c xi < a .  The solution of this system of equations gives A2 = 0 
and AT = ~ ( E Q  - V,) < 0, so that we have obtained a plane wave as the solution for the 
wavefunction, of the form 

If we now enforce the requirement that this wavefunction vanishes at x = f a  we obtain 
the customary quantization prescriptions and, consequently, the exact results for both the 
spectrum and the wavefunctions. 

That quite a considerable return is obtained for a very modest investment in information 
(the N values V ( x , ) )  is illustrated with reference to the results displayed in figures 1-3. 
We have chosen two typical one-dimensional Hamiltonians, that is, those corresponding to 
the Morse and bistable potentials, respectively. The latter found many useful application 
as, for instance, in connecticn with: (i) tunnel diodes and other switching devices [9] ;  (ii) 
lasers that above pumping threshold may operate in either one of two (or more) stable 
modes [ lo ,  111; (iii) chemical reactions in open systems that may have two stable stationary 
regimes separated by an unstable stationary solution [12]; (iv) the equilibrium position of 
the nitrogen atom in the ammonia molecule [ 131; etc. The Morse. potential is of some utility 
in modelling the interaction potential of diatomic molecules [14]. We have 

vMOm(x) = A [ I  - exp(-x)IZ (9) 

where we adopt the value A = 10, and 

where we choose y = 1, B = -1 and (Y = -7.4293, as discussed in [U]. In figure 1 we 
display the inferred potential V ( x )  which is compared with the exact figures provided by (9) 
(full curve). The potential function inferred by taking M = 0 (ground state) is represented 
by the broken curve, while the remaining curve (dotted) corresponds to results inferred 
by taking M = 2 (second excited state). Notice that in this case we are. able not only 
to interpolate, but also to extrapolate beyond the ‘input-interval’ [ -3 ,3] .  Unfortunately, 
this is not always the case, as illustrated by the bistable potential case (figures 2(a) and 
2(b)), where, however, the interpolation procedure works well enough. It is not surprising 
that the M = 2 inference is better than the M = 0 one. as it involves, in a way, more 
input information (the ‘structure’ of the ansatz wavefunction ( 1 )  is richer for M = 2). To 
study the effect of different choices for the number and location of the points x, of our 
sample, in the case of figure 2(a) we have used 10 non-equidistant points asymmetrically 
distributed in the interval [-3.31, while in figure 2(b) we have taken 18 equidistant points 
lying in the same interval. The quality of the results remains the same when changing the 
location of the points, but the inferred results approach better to the exact one when the 
number of sampling points increases. Figure 3 gives a typical example of the quality of 
our inferred wavefunctions (the ansatz provided by (1)). We depict there the second excited 
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x 

Figure 1. Inferred potential function V ( x )  is compared with the exact Morse potential (9) (full 
curve). Broken and dotted u v e s  compond to A4 = 0 (ground swe) and A4 = 2 (second 
excited state), respectively. To solve (3, we have taken N = 18, the concomitant poinfs 
symehically dishibuted around the origin in the interval [-3,3]. 

Table 1. Inferred energies are comped with exact results for several values of the parameter 
A of the Morse potential (9). Eo corresponds to the gmund state and El and E2 to the first and 
second excited state, respectively. Technical details are as in figure I. 

A =  10 A = 2 0  
Exact Inferred Exact Inferred 

Eo 2.111068 2.111068 3.037278 3.037278 
El 5.583204 5583204 8.361 833 8.361833 
E2 8.055340 8.055341 12.686388 12.686388 

Table 2. Same as table 1 for several values of the pardmeter @ of the bistable potential (IO), 
using CY = -1.4293 and y = I. 

p = 0  p=-1 
Exact Inferred Exact Inferred 

Eo -1.761 382 -1.761320 -5.222045 -5.222259 
El  -1.615230 -1.615205 -1.461511 -1.462125 
E2 0.660254 0.660235 -0.250719 -0.250930 

state of the bistable potential. Within the interpolation interval, no differences with the 
exact wavefunction can be appreciated. 

A similar agreement between inferred and exact figures can be found using other values 
of the potential parameters, and also looking at other quantal properties like energy spectra, 
expectation values by), etc. As an illuseation, we show in tables 1 and 2 the inferred and 
exact energy spectra up to the second excited state for the Morse potential (for different 
values of the parameter A )  and for the bistable potential (using different values of the 
parameter p).  A rapid glance to the pertinent figures confirms the quality of the results 
presented here. As one may expect the inferred results converge rapidly to the exact ones 
when an increasing number of points (in the same interval) are used, that is, when more input 
information on the discrete potential V(x i )  is assumed. Summing up, we have presented 
an extremely simple algorithm that, while avoiding any explicit numerical dealing with 
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x 

Figure 2. Same as figure 1 for the asymmetric bistable potential (10). To solve (5). we have 
taken: (a) 10 non-equidistant points asymmetrically distributed in the interval 1-3.31; (b) 18 
equidistant points in the same interval. 

1.00 

x 

Figure 3. lnfened wavefunction (dotted curve) for the second excited state %(x)  of  the bistable 
potential, (lo), is compared With the exactresult (full curve). Technical details are as in figure 1. 
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Schriidinger's equation, is able nonetheless to yield a wealth of new information, which is 
inferred from a very modest input information, without any undue effort. 
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